
GateRank: A linear attention extension with learnable rank structure inspired
by fast and slow synapses

Constantin Kronbichler 1 Jan Finkbeiner 1 2 Emre Neftci 1 2

Abstract
Long-context sequence modeling demands mech-
anisms that retain and selectively access informa-
tion across diverse timescales. Biological neural
systems achieve this through fast and slow synap-
tic dynamics, enabling rapid context adaptation
alongside stable long-term memory. In contrast,
state-space and linear attention models typically
compress history into a single, globally decay-
ing state per head, enforcing a 1-semiseparable
(rank-1) temporal structure that limits granular
retrieval and associative recall. We introduce Gat-
eRank, a multi-timescale extension to linear atten-
tion that maintains fast and slow memory states
and uses an input-dependent gate to consolidate
information and reset the fast state, relaxing the 1-
semiseparable decay constraint while preserving
streaming inference and chunk-parallel training.
Integrated with Mamba-2 and Gated DeltaNet and
supported by efficient Triton kernels, GateRank
achieves higher throughput than FlashAttention
at 32k tokens with modest overhead relative to
the base models. With GateRank, we train 760M-
parameter models that match or slightly improves
standard language modeling results, yielding sig-
nificant gains on retrieval-heavy tasks such as
Needle-In-A-Haystack, as well as improved learn-
ing on synthetic structured-memory tasks. These
findings suggest that biologically-inspired multi-
timescale memory can extend the expressive ca-
pacity of linear-time sequence models without
sacrificing efficiency.

1. Introduction
Natural language exhibits both short-range structure and
long-distance dependencies Biological neural systems ad-
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dress such demands by maintaining information across mul-
tiple temporal scales. In particular, neural dynamics operate
with distinct memory timescales: fast attractor dynamics
enable rapid context adaptation and flexible working mem-
ory, while slower synaptic plasticity consolidate information
across longer timescales for stable retrieval and structured
computation (O’Reilly & Frank, 2006; Zenke et al., 2017;
Tetzlaff et al., 2012). These multi-timescale mechanisms
provide a compelling inspiration for machine learning archi-
tectures tasked with processing long sequences efficiently.

Modern high-performing sequence models functionally re-
flect aspects of this biological perspective in transformers
(Finkbeiner & Neftci, 2025; Ellwood, 2024) and state-space
models. Self-attention and state-space models can natu-
rally be viewed from the perspective of synaptic plasticity
(Leroux et al., 2025; Vermani et al., 2025) and fast-weight
mechanisms (Ba et al., 2016; Schlag et al., 2021). By main-
taining a full list of past keys and values, softmax-based
self-attention offers fine-grained and content-selective re-
trieval, (Dao et al., 2022; Dao, 2023), but exhibits quadratic
computational cost in sequence length. Linear attention and
state-space models (SSMs) mitigate this cost by compress-
ing history (key-value pairs) into a fixed memory state. By
accumulating key–value interactions through a recurrent
update rather than storing all past interactions, these mod-
els enable streaming inference and chunk-parallel training
(Katharopoulos et al., 2020). Recent architectures such
as RetNet (Sun et al., 2023), GLA (Yang et al., 2024),
Mamba-2 (Dao & Gu, 2024), and Gated DeltaNet (Yang
et al., 2025a) enhance this mechanism by introducing input-
conditional gating that controls memory decay, leading to
strong performance at long sequence lengths and competi-
tive results with Transformers (Touvron et al., 2023; Brown
et al., 2020).

However, despite their success, a core limitation remains:
current linear attention architectures apply a global decay
per head that enforces a rank-1 dependency structure over
time. Under the formulation introduced in Mamba-2 (Dao
& Gu, 2024), these models exhibit 1-semiseparable state dy-
namics, meaning each token’s influence decays with a fixed
functional form shared across the entire temporal horizon.
Consequently, the memory cannot express heterogeneous
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decay patterns, such as protecting certain distant information
while rapidly forgetting others, and lacks the fine-grained re-
trieval and associative recall characteristic of self-attention
(Arora et al., 2023). This constraint makes these models
efficient, but potentially too rigid, limiting their ability to
represent circuit-like compositions (Merrill & Sabharwal,
2023; Merrill et al., 2025; Grazzi et al., 2025) and the selec-
tive retention seen in biological systems.

Motivated by the role of fast and slow dynamics in biological
memories, we introduce GateRank, a multi-timescale exten-
sion to linear attention. GateRank maintains two coupled
memory states: a fast synaptic state that rapidly integrates
incoming information and a slow synaptic state that selec-
tively captures persistent patterns. An input-dependent gate
controls the transfer from fast to slow memory and resets
the fast state when consolidation occurs. This mechanism
breaks the strict 1-semiseparable decay constraint by al-
lowing token-dependent transitions between timescales, en-
abling different tokens to follow distinct decay trajectories.
In doing so, GateRank preserves the streaming efficiency of
linear attention while expanding its expressive capacity and
memory selectivity. We implement GateRank as an addi-
tive module on top of existing architectures, demonstrating
integration with Mamba-2 (Dao & Gu, 2024) and Gated
DeltaNet (Yang et al., 2025a). To support practical train-
ing, we develop efficient Triton kernels (Tillet et al., 2019)
and a chunked-scan algorithm that maintains high through-
put with modest overhead and achieves faster training than
FlashAttention (Dao, 2023) at long context lengths.

Empirically, GateRank matches or slightly exceeds the per-
formance of the underlying architectures on standard lan-
guage modeling and common sense reasoning tasks (Gao
et al., 2024; Biderman et al., 2024), while providing consis-
tent improvements on retrieval-heavy benchmarks such as
Needle-In-A-Haystack (Hsieh et al., 2024). On synthetic
structured-memory tasks, GateRank improves learning sta-
bility and generalization, supporting the hypothesis that
multi-timescale synaptic dynamics increase representational
complexity beyond 1-semiseparable models. Together, these
results suggest that borrowing architectural priors from bio-
logical memory systems enables more expressive, selective,
and robust long-context processing without sacrificing the
efficiency benefits of linear attention.

Summarizing, our contributions are the following:

• Biologically inspired multi-timescale memory mech-
anism introducing fast and slow synapses extending
linear attention and state-space models.

• Relaxation of the 1-semiseparable decay constraint,
enabling token-dependent memory consolidation and
reset.

• Efficient Triton kernels and chunked-scan implementa-

tion supporting scalable training and streaming infer-
ence.

• Empirical gains in associative recall, retrieval, and
structured reasoning, with competitive language mod-
eling performance for models with 760M parameters.

• Demonstrated compatibility with Mamba-2 and Gated
DeltaNet, suggesting general applicability to linear-
time architectures.

2. Related work
We summarize here prior approaches examining and enhanc-
ing the memory management of linear attention models.

Replicating softmax’ low-entropy query-key interac-
tions One advantage of the softmax over linear at-
tention models is the low-entropy attention matrix, i.e.
softmax

(
QKT /

√
dk
)
, meaning that only very few query-

key relations become very large while most of them stay
very low (Zhang et al., 2024). This results in an unstruc-
tured attention matrix unlike in linear attention where the
stronger relations between keys caused by the common de-
cay render memory accesses less fine-grained. Since the
introduction of linear attention attempts have been made
to approximate the low-entropy behavior of the softmax
via kernel methods, e.g. in Performer models (Choroman-
ski et al., 2022). One successful solution is to introduce a
second order Taylor expansion of the softmax function as
described in Based (Arora et al., 2025). Such kernel meth-
ods were shown to be beneficial more broadly, for example
in Gated DeltaNets (Zhong et al., 2025). While our work
doesn’t use feature maps to approximate the softmax, it can
be viewed as a method to reduce the entropy (sharpen) the
attention weights by breaking up the monotonicity of the
decay dynamics.

Gating in linear attention / RNNs / state-space models
(SSMs) Initial linear RNNs used input-independent gating,
such as models S4 (Gu et al., 2022), S5 (Smith et al., 2023),
LRU (Orvieto et al., 2023), RWKV 4/5 (Peng et al., 2023)
or RetNet (Sun et al., 2023). In subsequent works, input-
dependent gating was added to state-space models as in
Mamba (Gu & Dao, 2024) which required some restrictions
to the decay matrix to be parallelizable over the sequence
length via a scan. Subsequent works established more par-
allelizable RNN dynamics by simplifying the decay to be
able to better utilize the matrix-matrix multiplication units
on GPUs, such as Mamba2 (Dao & Gu, 2024), GLA (Yang
et al., 2024), and RWKV 6 (Peng et al., 2024). The paral-
lelization enabled efficient training with larger state-sizes,
thereby increasing the memory capacity, and the associative
recall capabilities. However, the decayed outer product ac-
cumulation could lead to overwriting the state unlike fixed
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size sliding-window attention methods that can maintain all
information from the past keys and values, it stores. Only by
using the delta rule to orthogonalize the state updates, the
full capacity of the hidden state can be used. The use of the
delta-rule in linear attention was proposed in the fast-weight
programmer approach (Schlag et al., 2021) and improved
to be parallelizable with a chunk scan in DeltaNet (Yang
et al., 2025b). Combining this with the Mamba2-style gat-
ing mechanism in Gated DeltaNet (Yang et al., 2025a) led
to better language modeling performance while maintain-
ing the more effective use of the state size. Similar update
rules include RWKV 7 (Peng et al., 2025) and LongHorn
which derives its rule from a an online learning perspective
of linear attention (Liu et al., 2024).

Complexity class analysis of attention mechanisms An-
other way to compare attention mechanisms is to analyse
the complexity class of boolean circuits they can represent.
It has been shown that softmax-based attention is restricted
to computations with simpler circuits that lie in the TC0

class (Merrill & Sabharwal, 2023). Most linear attention
models also lie in TC0 (Merrill et al., 2025). Yet, the delta-
rule has been shown to be able to represent more complex
circuits in NC1 and, hence, should be able to perform more
complex reasoning in a single forward pass thanks to their
diagonal plus rank-1 state-transition structure (Grazzi et al.,
2025). Note that problems with NC1 circuit complexity can
only be solved via gradient descent learning when allowing
negative eigenvalues of the state-transition matrix (Grazzi
et al., 2025). Finally, even more complex structure of the
state-transition matrix can lead to higher circuit complexity,
e.g. via the application of multiple householder products has
led to even higher circuit complexity of these models (Siems
et al., 2025) or the use of a product of a column one-hot
matrix and a complex-valued diagonal matrix (Terzić et al.,
2025). The downside of more complex transition matrices
is the throughput penalty of current implementations, as in
(Cirone & Salvi, 2025), because they require indexing op-
erations that do not align well with the Triton way to write
GPU kernels (Tillet et al., 2019). Others suffer from lacking
a chunk scan implementation and fall back to a less efficient
parallel scan (Terzić et al., 2025).

The idea of higher rank transition matrices is very related
to the idea of breaking up the rank-1 structure in the decay
mask in GateRank. However, GateRank is different from
the state updates based on householder products: the lat-
ter leads to a different structure of the hidden dimension
while maintaining the rank-1 structure across the temporal
dimension. GateRank, on the other hand, introduces a more
complex structure of the temporal dimension. The differ-
ence between the hidden state structure and the temporal
structure can be described with the tensor-centric view of
state transitions introduced in (Guo et al., 2025).

Unstructured masking for linear attention models With
log-linear attention there has been a concurrent attempt to
enhance linear attention models by breaking up the mono-
tone structure of the decay mask (Guo et al., 2025). While
GateRank’s state-size is still fixed with respect to the se-
quence length, albeit doubled with respect to the baseline lin-
ear attention model, log-linear attention uses a pre-defined
split into decay segments that leads to logarithmic memory
growth during auto-regressive inference. The main differ-
ence between GateRank and log-linear attention is the learn-
able location of decay segment boundaries in GateRank.

3. GateRank
GateRank provides a more general gating mechanism com-
pared to the one introduced by Mamba2 (Dao & Gu, 2024)
which is also used in other linear attention models such as
Gated DeltaNet (Yang et al., 2025a). For simplicity, we
describe the recurrent, parallel, and chunkwise parallel form
only for the GateRank + Mamba2 extension but note that
it applies to all other linear attention models with input-
conditioned gating such as Gated DeltaNet (Yang et al.,
2025a), as demonstrated by our implementation for both
Mamba2 and Gated DeltaNet. GateRank splits the Mamba2-
like gated state update into a hierarchy of two states: a state
with fast updates that accumulates key-value outer products
at every timestep, just like the hidden state in Mamba2, and,
a slow state that intermittently accumulates the fast state.
Whenever the fast state is added to the slow state, the fast
state is reset to zero.

Gate computation Both gates are computed in log-space.
The slow state gate is computed via a projection followed
by a short convolution of length 4 and a ReLU activation:

log(αt) = −Afast ReLU (ShortConv (Wαxt + bα)) (1)

where Afast is a scalar decay coefficient, learned via gradient
descent. Since ReLU outputs are non-negative, log(αt) = 0
corresponds to αt = 1 (no decay), while log(αt) > 0 corre-
sponds to αt > 1 which, after normalization in cumulative
products, creates decay boundaries that we call reset seg-
ments. When log(αt) ̸= 0, the slow state is updated by
accumulating the fast state, and the fast state is reset to zero.

The fast decay βt is computed just like the decay in Mamba2
via softplus:

log(βt) = −Aslowsoftplus(Wβxt + bβ) (2)

ensuring continuous decay within reset segments.

Recurrent form The recurrent formulation is based on
two states with different gates αt and βt:
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Γ =


1 0 0 0 0 0
α1 1 0 0 0 0

α2α1 α2 1 0 0 0
α3α2α1 α3α2 α3 1 0 0

α4α3α2α1 α4α3α2 α4α3 α4 1 0
α5α4α3α2α1 α5α4α3α2 α5α4α3 α5α4 α5 1



(a)


1 0 0 0 0 0
α1 1 0 0 0 0

α2α1 α2 1 0 0 0
α2α1 α2 1 1 0 0
α2α1 α2 1 α4 1 0
α2α1 α2 1 α5α4 α5 1


α5α4α3

(b)

Figure 1. (a) Mamba2 decay mask structure for parallel form: all positions have decay coefficients αt applied, resulting in a standard
rank-1 semi-separable structure where Γi,j = γi/γj with γi =

∏i
j=1 αj . (b) Illustration of the intra-chunk decay application in

Mamba2’s chunk scan. The intra-chunk decay application only requires a single state materialized at the chunk boundary since each
column has to be multiplied with the same gate as every other column on its row, unlike in GateRank’s intra-chunk scan, visualized in
Figure 2.

Γ⊙ Λ =


1 0 0 0 0 0
α1 1 0 0 0 0
α1 1 1 0 0 0

α3α1 α3 α3 1 0 0
α3α1 α3 α3 1 1 0
α3α1 α3 α3 α5 α5 1

⊙


1 0 0 0 0 0
β1 1 0 0 0 0
β1 β2 1 0 0 0
β1 β3β2 β3 1 0 0
β1 β3β2 β3 β4 1 0
β1 β3β2 β3 β5β4 β5 1



(a)


1 0 0 0 0 0

α1β1 1 0 0 0 0
α1β1 β2 1 0 0 0
α1β1 β2 1 1 0 0
α1β1 β2 1 β4 1 0
α1β1 β2 1 α5β5β4 α5β5 1


α3

α3β3
(b)

Figure 2. (a) GateRank decay mask structure for parallel form: the slow state is decayed only at t ∈ {1, 3, 5} (where log(αt) ̸= 0)
indicating the reset segment boundaries. At other positions, log(αt) = 0 corresponding to αt = 1 (no decay). (b) Illustration of the
intra-chunk decay application in GateRank’s chunk scan. Because the reset segments incorporated into the slow state (green) and the final
reset segment (blue) require different intra-chunk decay updates, GateRank materializes the slow and the fast state at the chunk boundary.
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Figure 3. Recurrent mode for GateRank. Dashed arrows indicate
a gating mechanism that does not necessarily propagate the value
along this arrow at every timestep, depending on what log(α) is
obtained from the gated convolution of the input.

Sslow
t = αtS

slow
t−1 +

{
Sfast
t if log(αt) ̸= 0

0 otherwise

Sfast
t =

({
βtS

fast
t−1 if log(αt) = 0

0 otherwise

)
+ ktv

T
t

ot = qT
t (S

slow
t + Sfast

t ) (3)

See Figure 3 for an illustration of the recurrent form of
GateRank. Note that the gating mechanism of equation 3
is a more general form of the Mamba2 gating mechanism:
if the slow state remains untouched, i.e. log(αt) = 0, we
recover the Mamba2 state-space equations.

Parallel form The parallel form multiplies by two mask
matrices as shown in Figure 2a:

O = (QKT ⊙ Γ⊙ Λ⊙M)V (4)

where Γi,j = γi

γj
using γi =

∏i
j=1 αj as in Mamba2. The
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mask Λ encodes the higher-rank structure from reset seg-
ments. Figure 2a shows an example with resets at positions
{1, 3, 5} creating three reset segments colored distinctly:
positions 1 (green), positions 2-3 (blue), and positions 4-6
(yellow). Within each reset segment, β gates create local
cumulative products. For a comparison with the 1-SS mask
of Mamba2 that omits the Λ mask see Figure 1a.

To define Λ, we introduce rnext(i, l) which returns the start
of the next reset segment after position i up to position l:

rnext(i, l) =

{
min{t ∈ [i, l] | log(αt) ̸= 0} if such t exists
l otherwise

(5)

The local cumulative product within each reset segment is:

λi =

i∏
j=si

βj (6)

si =

{
1 + max{t ≤ i | log(αt) ̸= 0} if such t exists
1 otherwise

Using these definitions, the decay mask Λ becomes:

Λi,j =
λrnext(j,i)

λj
. (7)

As visible in Figure 2a, this creates higher-rank structure:
each reset segment forms a rank-1 block, but multiple seg-
ments yield rank greater than 1 overall.

Chunk recurrent form For efficient computation, GateR-
ank uses a chunked implementation as illustrated in Figure
2b. Using the chunk notation from (Yang et al., 2025a),
we denote Q[t] := qtC+1:(t+1)C+1 as the query block for
chunk t with chunk size C, and qr

[t] := qtC+r as the r-th
query within chunk t. We use λr

[t] to denote λtC+r, the
cumulative product at position r within chunk t.

The chunk scan requires tracking which key-value pairs
belong to completed reset segments (added to slow state)
versus the ongoing final segment (added to fast state). Figure
2b illustrates this: the green column shows the single decay
to the slow state, while the blue columns show the different
decays for the fast state’s ongoing reset segment. In contrast,
Mamba2 without slow state updates only needs to track a
single state at the chunk boundary, as illustrated in Figure
1b.

We define r[t] as a flag: r[t] = 1 if chunk t contains any
position with log(αtC+r) ̸= 0, and r[t] = 0 otherwise. This
flag determines whether the fast state gets consolidated into
the slow state at the chunk boundary.

For decay computations, we need:

dr
last,[t] =

λ
rnext(r,C)
[t]

λr
[t]

(decay to last position of chunk)

dr
first,[t] = λ

rnext(0,r)
[t] (decay from first position of chunk)

With the notation from (Yang et al., 2025a), the chunk-level
recurrence becomes:

Sfast
[t+1] = (1− r[t])

−→
S fast

[t] +V
T

[t]

−→
Kfast

[t]

Sslow
[t+1] =

−→
S slow

[t] + r[t]
−→
S fast

[t] +V
T

[t]

−→
Kslow

[t] (8)

O[t] =
(←−
Qfast

[t] S
fast
[t]

T
+
←−
Qslow

[t] Sslow
[t]

T
)

+
(
Q[t]K

T

[t] ⊙ Γ[t] ⊙ Λ[t] ⊙M
)
V[t] (9)

The arrows denote decay-weighted quantities. The blue
terms track the fast state (ongoing reset segment) while
green terms track the slow state (completed reset segments).
The asymmetry in the chunk boundary update arises because
key-value pairs from completed reset segments accumulate
in the slow state, while pairs from the final ongoing segment
accumulate in the fast state.

We define the last reset segment in chunk t as all positions
r such that no reset occurs between r and the chunk end
C. Formally: {r | r ∈ [1, C], rnext(r, C) = C}. This
determines which keys contribute to each state:

←−q fast,r
[t] = γr

[t]d
r
first,[t]q

r
[t]

←−q slow,r
[t] = γr

[t]q
r
[t]

−→
k fast,r

[t] =


γC
[t]

γr
[t]
dr

last,[t]k
r
[t] , if r in last reset segment

0 , otherwise

−→
k slow,r

[t] =


γC
[t]

γr
[t]
dr

last,[t]k
r
[t] , if r not in last reset segment

0 , otherwise
−→
S fast

[t] = γC
[t]d

C
first,[t]S[t]

−→
S slow

[t] = γC
[t]S[t] (10)

See appendix A on how the implementation exploits the
reset segment structure for efficient computation.

4. Experimental Setup
4.1. Model Architecture and Training Configuration

All models are trained at approximately 760M parameters
for direct comparability. Each model uses the Mamba2
attention layer combined with MLP layers. The architecture
has a model dimension of 1536, with Mamba2-based models
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Table 1. Performance of models on language modeling and common sense reasoning tasks.
Model Wiki. LMB. Avg. LMB. PIQA Hella. Wino. ARC-e ARC-c OBQA SCIQ BoolQ Avg.

ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc n ↑ acc n ↑ acc ↑ ↑
Mamba2 21.13 19.65 20.39 39.59 71.00 51.17 56.83 66.50 33.36 39.20 77.50 56.85 54.67
GateRank + Mamba2 20.80 19.98 20.39 39.12 70.29 50.57 54.70 67.30 33.96 36.80 81.20 59.88 54.87
Gated DeltaNet 20.79 17.53 19.16 40.71 70.62 50.91 55.41 67.76 36.01 36.60 81.60 56.12 55.08
GateRank + Gated DeltaNet 21.12 16.29 18.71 43.06 70.95 50.25 53.59 68.10 33.28 37.80 82.80 57.58 55.27

Table 2. Zero-shot performance comparison on S-NIAH benchmark suite

S-NIAH-1 S-NIAH-2 S-NIAH-3 S-NIAH-MULTI-KEY S-NIAH-MULTI-QUERY S-NIAH-MULTI-VALUE Average

Model 1K 2K 4K 1K 2K 4K 1K 2K 4K 1K 2K 4K 1K 2K 4K 1K 2K 4K 1K 2K 4K

Mamba2 99.6 99.4 99.2 93 99 80.4 27.6 41.6 11.4 23.6 20.6 17.6 51.95 33.5 24 53.3 28.15 20.95 58.18 54.41 42.82
GateRank + Mamba2 100 99.8 90.8 100 99.2 52 75.6 47.8 21 27 22.6 22 44.4 32.6 18.8 51.65 36.35 22.21 66.44 56.39 37.8
Gated DeltaNet 100 100 99.8 100 99.8 98.4 50.2 28.4 17.8 38.6 30.6 27 50.4 39.25 24.8 58.5 48.85 29.6 66.28 57.82 49.57
GateRank + Gated DeltaNet 99.8 99.4 89.4 99.8 100 94 91.2 78 44.2 44.2 31.4 28.6 71.55 49.05 29.25 69.6 49.15 29.7 79.36 67.83 52.53

using 20 layers and Gated DeltaNet-based models using 18
layers.

Training Details We train all models on 30B tokens from
the FineWeb-Edu dataset (HuggingFace, 2024). The train-
ing uses an effective batch size of 120 with sequences of
4096 tokens. We employ the AdamW optimizer with a
learning rate of 1.25e-3, cosine decay schedule, and weight
decay of 0.1. Gradient clipping is applied with a norm of
1.0, and we use a 1% warmup period. For parallel training
across 8 GPUs, we utilize the Flame framework (Zhang &
Yang, 2025).

4.2. Language Modeling and Common Sense Reasoning

We evaluate language modeling performance using perplex-
ity on validation sets and assess common sense reasoning
capabilities using tasks from the EleutherAI evaluation har-
ness (Gao et al., 2024; Biderman et al., 2024). The evalu-
ation includes WikiText (Merity et al., 2016), LAMBADA
(Paperno et al., 2016), PIQA (Bisk et al., 2020), HellaSwag
(Zellers et al., 2019), and WinoGrande (Sakaguchi et al.,
2020). Science question answering is evaluated through
ARC-easy and ARC-challenge (Clark et al., 2018), OBQA
(Mihaylov et al., 2018), and SCIQ (Welbl et al., 2017). Ad-
ditionally, we include BoolQ (Clark et al., 2019) for reading
comprehension with yes/no questions requiring complex
reasoning.

4.3. Associative Recall Evaluation

To evaluate associative recall capabilities, we use the Struc-
tured Needle-In-A-Haystack (S-NIAH) benchmark suite
from RULER (Hsieh et al., 2024). This suite includes six
task variants: S-NIAH-1, S-NIAH-2, and S-NIAH-3 for
single-needle retrieval with increasing difficulty; S-NIAH-
MULTI-KEY for retrieving multiple keys; S-NIAH-MULTI-
QUERY for multiple queries about the same information;
and S-NIAH-MULTI-VALUE for multiple values associated
with keys. We evaluate models at three context lengths: 1K,
2K, and 4K tokens. These tasks test the model’s ability to

retrieve specific information associated with keys embedded
within longer contexts.

4.4. Circuit Complexity Evaluation: S5 Permutation
Composition

To assess the computational complexity that can be repre-
sented in a single attention layer, we use the S5 permutation
composition task. This task requires computing the product
of sequences of permutations on the symmetric group S5,
which can only be solved by circuits in the NC1 complexity
class (circuits with logarithmic depth) (Merrill et al., 2024;
Barrington, 1989). The task is NC1-complete based on
Barrington’s Theorem, which establishes that permutation
composition for non-solvable groups requires logarithmic-
depth circuits.

Training Configuration We train a single attention layer
on S5 sequences of length 16. The training uses the AdamW
optimizer with a learning rate of 0.01 with linear decay to
0 and weight decay of 0.01. We train for 4000 steps with
a batch size of 128, using a 128-step warmup period and
bfloat16 mixed precision. For validation, we evaluate on
sequences longer than the training length to assess extrapo-
lation capabilities.

4.5. Throughput Evaluation

We benchmark the efficiency of our Triton-based chunk
scan implementation by measuring the time per training step
across different sequence lengths. The benchmark compares
GateRank against the Mamba2 baseline (linear attention),
the Gated DeltaNet baseline (linear attention with gating),
and FlashAttention-v2 (Dao, 2023) (softmax attention, Tri-
ton implementation). Measurements are taken for sequence
lengths ranging from short contexts to 32K+ tokens to char-
acterize the crossover point where linear attention becomes
more efficient than softmax attention.
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Figure 4. Validation losses for S5 state exchange on length 64
sequences. Models are trained on the same, randomly generated
sequences of length 16.

5. Results and Discussion
5.1. Language Modeling and Common Sense Reasoning

Table 1 presents the performance of GateRank-enhanced
models compared to their baseline counterparts on language
modeling and common sense reasoning tasks. GateRank
maintains or improves performance on these benchmarks,
with the magnitude and pattern of changes differing between
the two base architectures.

Language Modeling Performance GateRank modestly
improves language modeling performance across both base
architectures. For Mamba2, WikiText perplexity improves
from 21.13 to 20.80, while LAMBADA performance re-
mains comparable. For Gated DeltaNet, the model achieves
the best overall perplexity average of 18.71, with improve-
ments on both WikiText and LAMBADA metrics. While
these changes are not necessarily significant, the modest
improvements suggest that GateRank can at least match
the baseline models in language modeling if not slightly
improve them.

Common Sense Reasoning GateRank improves average
common sense reasoning performance for both architec-
tures, though individual benchmark results vary. GateRank
+ Mamba2 achieves an average score of 54.87 versus 54.67
for baseline, with notable gains on BoolQ (59.88 vs. 56.85),
SCIQ (81.20 vs. 77.50), and ARC-challenge (33.96 vs.
33.36). GateRank + Gated DeltaNet achieves an average
of 55.27 versus 55.08 for baseline, with improvements on
LAMBADA accuracy (43.06 vs. 40.71) and SCIQ (82.80
vs. 81.20). While some individual benchmarks show small
decreases, the overall pattern demonstrates that the dual-
state architecture maintains competitive performance across
diverse reasoning tasks with modest improvements in aggre-
gate scores.

5.2. Associative Recall with Needle-In-A-Haystack

The S-NIAH benchmark results in Table 2 provide com-
pelling evidence for GateRank’s enhanced associative recall
capabilities, revealing a clear pattern: benefits scale with
task complexity.

Simple Retrieval Tasks On the simplest retrieval tasks
(S-NIAH-1 and S-NIAH-2), all models achieve near-perfect
performance at short contexts, with GateRank maintaining
competitive accuracy. At 1K tokens, GateRank + Mamba2
achieves perfect accuracy on both tasks, demonstrating that
the dual-state architecture does not compromise basic re-
trieval capabilities. However, at longer contexts (4K tokens),
the advantage becomes less consistent, with baseline models
occasionally matching or exceeding GateRank performance
on these simpler tasks. This suggests that for straightfor-
ward key-value retrieval, standard linear attention’s rank-1
structure is often sufficient.

Complex Retrieval Tasks The most significant improve-
ments emerge on harder retrieval variants requiring simul-
taneous tracking of multiple pieces of information. On S-
NIAH-3, GateRank + Gated DeltaNet demonstrates substan-
tial gains across all context lengths, nearly doubling baseline
performance at 1K tokens and achieving even larger relative
improvements at 2K and 4K tokens. Similar patterns appear
across MULTI-KEY, MULTI-QUERY, and MULTI-VALUE
tasks, where GateRank consistently outperforms baselines
by significant margins.

The overall average scores reveal the cumulative benefit:
GateRank + Gated DeltaNet achieves 79.36% at 1K to-
kens compared to 66.28% for the baseline, with advantages
maintained across longer contexts (67.83% vs. 57.82% at
2K, 52.53% vs. 49.57% at 4K). These improvements are
particularly notable given that all models face increasing
difficulty as context length grows, yet GateRank maintains
its advantage throughout.

Interpretation These results support the hypothesis that
breaking the rank-1 decay structure of linear attention en-
ables more sophisticated memory management. The dual-
state architecture allows GateRank to maintain both recently
accessed information (in the fast state) and selectively pre-
served long-term associations (in the slow state). This is
particularly beneficial when multiple pieces of information
must be simultaneously tracked and retrieved based on dif-
ferent keys, as required by the harder NIAH variants.

The contrasting performance on simple versus complex
tasks suggests that GateRank’s benefits scale with task com-
plexity. Simple key-value retrieval can be handled ade-
quately by standard linear attention’s rank-1 structure, but
complex retrieval may require the additional representa-
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Figure 5. Benchmark results showing time for a training step (we use the Triton implementation of FlashAttention-v2).

tional capacity that GateRank provides. This finding has
important implications for long-context language modeling,
where models must frequently perform complex information
retrieval from extended documents or conversations.

5.3. Circuit Complexity: S5 Permutation Composition

Figure 4 presents validation losses for single-layer models
trained on the S5 permutation composition task. This task
requires computing sequential products of permutations on
the symmetric group S5, which is NC1-complete based
on Barrington’s Theorem (Barrington, 1989). The NC1

complexity class contains problems solvable by circuits
with logarithmic depth, representing a fundamental barrier
for constant-depth architectures.

Performance on Training Length None of the models
successfully solved the task at the training length of 16 po-
sitions, as evidenced by validation losses remaining well
above zero. This aligns with theoretical predictions from
recent work showing that linear attention mechanisms and
even standard transformers are fundamentally limited by
TC0 complexity bounds (Merrill et al., 2024). The S5 per-
mutation composition problem requires tracking state trans-
formations through sequential operations, which constant-
depth circuits cannot efficiently represent.

Extrapolation to Longer Sequences The key finding
appears in the extrapolation behavior when evaluating on
sequences longer than the training length of 16. GateR-
ank models maintain lower validation losses on longer se-
quences compared to baseline models, demonstrating su-
perior length generalization. This improved extrapolation
is significant because it suggests that GateRank may learn
more compositional representations of the permutation op-
erations rather than merely memorizing patterns specific to
length-16 sequences.

Implications for Computational Power While we can-
not definitively conclude that GateRank operates in a higher
complexity class than baseline linear attention (as no model
solved the task perfectly), the improved performance sug-
gests enhanced computational capacity. The dual-state ar-
chitecture with separate fast and slow memory streams may
provide additional computational pathways that better ap-
proximate logarithmic-depth computations. This is theoret-
ically plausible because GateRank’s conditional state up-
dates create data-dependent computation graphs that can
vary based on reset patterns, potentially enabling more flex-
ible information flow than fixed rank-1 decay structures.

The practical implication is that GateRank may be better
suited for tasks requiring iterative refinement or multi-step
reasoning, even if it cannot fundamentally escape the TC0

complexity bounds of attention-based architectures. This
enhanced approximation capacity could prove valuable for
long-context reasoning tasks in language modeling, where
models must perform quasi-symbolic operations over ex-
tended contexts.

5.4. Throughput and Efficiency

Figure 5 presents throughput measurements comparing Gat-
eRank’s chunk scan implementation against baseline linear
attention models and FlashAttention-v2. The results reveal
both the promise and current limitations of the GateRank
implementation.

Comparison to Softmax Attention GateRank achieves a
critical milestone by surpassing FlashAttention-v2 through-
put at sequence lengths beyond 32K tokens. This crossover
point is significant because it demonstrates that GateRank
maintains the fundamental efficiency advantage of linear
attention for long sequences. As sequence length increases,
GateRank’s O(n) complexity provides increasingly sub-
stantial benefits over FlashAttention-v2’s O(n²) complexity,
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making it viable for applications requiring very long context
processing.

Overhead Compared to Linear Attention Baselines
However, GateRank introduces considerable overhead com-
pared to vanilla Mamba2 and Gated DeltaNet implementa-
tions. This performance gap stems from two primary factors.
First, GateRank must materialize both fast and slow states
at chunk boundaries, effectively doubling the state size that
must be managed during the chunk scan. This increases
memory bandwidth requirements and creates a larger mem-
ory bottleneck. Second, the conditional state updates based
on reset patterns require additional gather operations that
lack the regular memory access patterns of structured linear
attention, leading to less efficient memory coalescing on
modern GPUs.

Implementation Optimization Potential The current Tri-
ton implementation represents an initial proof-of-concept
rather than a fully optimized kernel. Several optimization
opportunities remain unexplored. First, a more IO-aware im-
plementation could reduce redundant memory transfers by
carefully scheduling when fast and slow states are material-
ized and consumed. Second, the gather operations could
potentially be replaced with more structured operations by
exploiting patterns in typical reset sequences. Third, kernel
fusion opportunities may exist where multiple operations
on the state can be combined to reduce memory round-trips.

Despite current limitations, the fact that GateRank achieves
competitive throughput with FlashAttention at long se-
quence lengths while providing superior associative recall
validates the approach’s practical viability. Future work on
kernel optimization should focus on closing the gap with
baseline linear attention while preserving GateRank’s en-
hanced memory management capabilities.

5.5. Overall Assessment

The experimental results demonstrate that GateRank suc-
cessfully addresses key limitations of linear attention models
through its learnable rank structure with fast and slow mem-
ory states. The dual-state architecture provides measurable
benefits across multiple dimensions: enhanced complex
associative recall (S-NIAH-3 and multi-* variants), better
approximation of sequential computation (S5), and main-
tained efficiency for long sequences (throughput beyond
32K tokens). The trade-off is equally clear: modest over-
head compared to baseline linear attention.

Overall, the results suggest that GateRank is particularly
well-suited for applications requiring long-context reason-
ing and complex information retrieval.

6. Conclusion
This paper introduces GateRank, a novel extension to linear
attention that overcomes fundamental limitations of rank-1
semi-separable decay structures through learnable memory
segmentation inspired by multi-timescale synaptic plasticity
in biological neural systems. By maintaining separate fast
and slow states with conditional reset mechanisms, GateR-
ank provides linear attention models with fine-grained mem-
ory management while preserving computational efficiency.
Our theoretical contribution breaks the rank-1 constraint of
standard linear attention by introducing a dual-state archi-
tecture with learnable reset patterns that determine when
information consolidates from fast transient memory into
slow persistent memory. This maintains linear-time com-
plexity while enabling higher-rank decay structures for more
sophisticated associative recall.

Furthermore, we show the general applicability of GateR-
ank to linear attention by implementing it on top of both
Mamba2 and Gated DeltaNet. Empirically, our 760M pa-
rameter GateRank model shows modest improvements on
language modeling and more meaningful gains on com-
plex associative recall tasks requiring simultaneous track-
ing of multiple information streams. Circuit complexity
experiments reveal enhanced capacity for approximating se-
quential computations with superior extrapolation to longer
sequences. Critically, these improvements maintain linear
scaling with sequence length, surpassing FlashAttention-v2
throughput beyond 32K tokens.

The learnable reset patterns provide a principled mecha-
nism for dynamically adjusting memory granularity based
on input characteristics, discovering optimal segmentation
patterns during training rather than imposing a fixed strat-
egy. GateRank demonstrates that the rank-1 constraint is
not fundamental to linear complexity, but a design choice
that can be relaxed through architectural innovation guided
by neuroscience principles, opening new possibilities for
efficient long-context processing with sophisticated memory
management.
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A. Implementation details
Λ is computed as the exponential of the output of the function reverse reset cumsum in listing 2.

Decaying to the last position for the keys requires reversing the cumulative sum in the log-space by taking the exponential of
last row of the matrix computed in reverse reset cumsum from listing 2 which we denote as dlast.

The log of extra fast state multiplier for decaying to the first position in a chunk is computed in the function
same segment bwd mult in listing 4, the log space fast gate being log(λ), which we denote as dfirst.

Lastly, we need the function chunk contains reset from listing 3 to model the conditional updates of both states at
the chunk boundaries.

def reset_idcs_cm(log_alpha):
"""
for masking operations in index space
to avoid floating-point comparisons
"""
reset_idcs = where(

log_alpha != 0,
arange(log_alpha.size(0)),
0

)
reset_idcs_cm = cummax(reset_idcs)

Listing 1. PyTorch style reset index cummax computation which is used for masking to avoid imprecise floating-point comparisons

def reset_cumsum(log_beta, log_alpha):
"""
computes the cumsum of log_beta
with resets after log_alpha != 0
"""
log_beta_cs = cumsum(log_beta)

# use cummin because gates are
# always negative in log-space
lmbda =

log_beta_cs - \
cummin(

where(
left_pad(log_alpha)[:-1] != 0,
left_pad(log_beta_cs)[:-1],
0

),
dim=-1

)
return lmbda

def reverse_reset_cumsum(
log_alpha, lmbda,
reset_idcs_cm,

):
"""
computes the mask matrix which is used
as Lambda in the parallel form
log_alpha: (chunk_size,)
lmbda: (chunk_size,)
returns: (chunk_size,chunk_size)
"""
last_reset_seg_2d_mask =

lower_diag_mask & \
(F.pad(reset_idcs_cm, (1,0))[:-1] == reset_idcs_cm)

# perform inverse in log-space with
# "outer subtraction"
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# for each reset segment
# don’t subtract at reset locations
# since local cumsums from previous
# segment go up to non-zero log_alpha
# indicating start of next segment
seg_inv_2d =

lmbda[:,None] - \
where(

log_alpha[None,:] == 0,
lmbda[None,:],
0

)
seg_inv_2d = seq_inv_2d.masked_fill(

˜last_reset_seg_2d_mask, 0)

# each row is a sum of previous rows
# with reset signals in log_alpha
# (seg_inv_2d contains full reversed
# cumsum of each past segment at rows
# where log_alpha != 0)
multiplier = (log_alpha[None,:] != 0) \

& lower_diag_mask

return (identity + multiplier) \
@ seg_inv_2d

Listing 2. PyTorch style reset cumsums and reverse computation with matrix multiplication (see listing ?? for computation of
reset idcs cm)

def chunk_contains_reset(log_alpha):
return log_alpha.sum() != 0

Listing 3. Check if there are resets in a chunk given the slow gate vector for the chunk note that a non-zero slow gate indicates a reset in
the fast state.

def same_segment_bwd_mult(
log_alpha, lmbda, reset_idcs_cm

):
masked_offs = where(

left_pad(reset_idcs_cm)[:-1] & \
log_alpha[0] == 0,

arange(log_alpha.size(0)),
0

)
masked_offs = cummax(masked_offs)
return gather(lmbda, masked_offs)

Listing 4. PyTorch style code for the inter-chunk decay. It uses the reset idcs cm as computed in listing 1
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